3.6.98 \(\int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx\) [598]

3.6.98.1 Optimal result
3.6.98.2 Mathematica [A] (verified)
3.6.98.3 Rubi [A] (warning: unable to verify)
3.6.98.4 Maple [A] (verified)
3.6.98.5 Fricas [B] (verification not implemented)
3.6.98.6 Sympy [F]
3.6.98.7 Maxima [A] (verification not implemented)
3.6.98.8 Giac [F]
3.6.98.9 Mupad [F(-1)]

3.6.98.1 Optimal result

Integrand size = 33, antiderivative size = 392 \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx=\frac {\left (2 a b (A-B)-a^2 (A+B)+b^2 (A+B)\right ) \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}-\frac {\left (2 a b (A-B)-a^2 (A+B)+b^2 (A+B)\right ) \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}-\frac {\sqrt {a} \left (a^2 A b-3 A b^3+a^3 B+5 a b^2 B\right ) \arctan \left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{b^{3/2} \left (a^2+b^2\right )^2 d}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{b \left (a^2+b^2\right ) d (b+a \cot (c+d x))}+\frac {\left (a^2 (A-B)-b^2 (A-B)+2 a b (A+B)\right ) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d}-\frac {\left (a^2 (A-B)-b^2 (A-B)+2 a b (A+B)\right ) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d} \]

output
-1/2*(2*a*b*(A-B)-a^2*(A+B)+b^2*(A+B))*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2)) 
/(a^2+b^2)^2/d*2^(1/2)-1/2*(2*a*b*(A-B)-a^2*(A+B)+b^2*(A+B))*arctan(1+2^(1 
/2)*cot(d*x+c)^(1/2))/(a^2+b^2)^2/d*2^(1/2)+1/4*(a^2*(A-B)-b^2*(A-B)+2*a*b 
*(A+B))*ln(1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)^2/d*2^(1/2)-1/ 
4*(a^2*(A-B)-b^2*(A-B)+2*a*b*(A+B))*ln(1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/ 
2))/(a^2+b^2)^2/d*2^(1/2)-(A*a^2*b-3*A*b^3+B*a^3+5*B*a*b^2)*arctan(a^(1/2) 
*cot(d*x+c)^(1/2)/b^(1/2))*a^(1/2)/b^(3/2)/(a^2+b^2)^2/d+a*(A*b-B*a)*cot(d 
*x+c)^(1/2)/b/(a^2+b^2)/d/(b+a*cot(d*x+c))
 
3.6.98.2 Mathematica [A] (verified)

Time = 2.68 (sec) , antiderivative size = 342, normalized size of antiderivative = 0.87 \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx=\frac {\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)} \left (-2 \sqrt {2} \left (2 a b (A-B)-a^2 (A+B)+b^2 (A+B)\right ) \left (\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )-\arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )\right )+\frac {4 \sqrt {a} \left (a^2+b^2\right ) (A b-a B) \arctan \left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{b^{3/2}}+\frac {8 \sqrt {a} \left (-2 A b^3+a \left (a^2+3 b^2\right ) B\right ) \arctan \left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{b^{3/2}}+\sqrt {2} \left (a^2 (A-B)+b^2 (-A+B)+2 a b (A+B)\right ) \left (\log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )-\log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )\right )+\frac {4 a \left (a^2+b^2\right ) (A b-a B) \sqrt {\tan (c+d x)}}{b (a+b \tan (c+d x))}\right )}{4 \left (a^2+b^2\right )^2 d} \]

input
Integrate[(A + B*Tan[c + d*x])/(Cot[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^2) 
,x]
 
output
(Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(-2*Sqrt[2]*(2*a*b*(A - B) - a^2*(A 
 + B) + b^2*(A + B))*(ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] - ArcTan[1 + 
Sqrt[2]*Sqrt[Tan[c + d*x]]]) + (4*Sqrt[a]*(a^2 + b^2)*(A*b - a*B)*ArcTan[( 
Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]])/b^(3/2) + (8*Sqrt[a]*(-2*A*b^3 + a*( 
a^2 + 3*b^2)*B)*ArcTan[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]])/b^(3/2) + Sq 
rt[2]*(a^2*(A - B) + b^2*(-A + B) + 2*a*b*(A + B))*(Log[1 - Sqrt[2]*Sqrt[T 
an[c + d*x]] + Tan[c + d*x]] - Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c 
+ d*x]]) + (4*a*(a^2 + b^2)*(A*b - a*B)*Sqrt[Tan[c + d*x]])/(b*(a + b*Tan[ 
c + d*x]))))/(4*(a^2 + b^2)^2*d)
 
3.6.98.3 Rubi [A] (warning: unable to verify)

Time = 1.69 (sec) , antiderivative size = 331, normalized size of antiderivative = 0.84, number of steps used = 24, number of rules used = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.697, Rules used = {3042, 4064, 3042, 4092, 27, 3042, 4136, 27, 3042, 4017, 25, 27, 1482, 1476, 1082, 217, 1479, 25, 27, 1103, 4117, 73, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \tan (c+d x)}{\cot (c+d x)^{3/2} (a+b \tan (c+d x))^2}dx\)

\(\Big \downarrow \) 4064

\(\displaystyle \int \frac {A \cot (c+d x)+B}{\sqrt {\cot (c+d x)} (a \cot (c+d x)+b)^2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {B-A \tan \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 4092

\(\displaystyle \frac {a (A b-a B) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}-\frac {\int -\frac {B a^2-(A b-a B) \cot ^2(c+d x) a+A b a+2 b^2 B+2 b (A b-a B) \cot (c+d x)}{2 \sqrt {\cot (c+d x)} (b+a \cot (c+d x))}dx}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {B a^2-(A b-a B) \cot ^2(c+d x) a+A b a+2 b^2 B+2 b (A b-a B) \cot (c+d x)}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))}dx}{2 b \left (a^2+b^2\right )}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {B a^2-(A b-a B) \tan \left (c+d x+\frac {\pi }{2}\right )^2 a+A b a+2 b^2 B-2 b (A b-a B) \tan \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 b \left (a^2+b^2\right )}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 4136

\(\displaystyle \frac {\frac {\int \frac {2 \left (b \left (-B a^2+2 A b a+b^2 B\right )-b \left (A a^2+2 b B a-A b^2\right ) \cot (c+d x)\right )}{\sqrt {\cot (c+d x)}}dx}{a^2+b^2}+\frac {a \left (a^3 B+a^2 A b+5 a b^2 B-3 A b^3\right ) \int \frac {\cot ^2(c+d x)+1}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {2 \int \frac {b \left (-B a^2+2 A b a+b^2 B\right )-b \left (A a^2+2 b B a-A b^2\right ) \cot (c+d x)}{\sqrt {\cot (c+d x)}}dx}{a^2+b^2}+\frac {a \left (a^3 B+a^2 A b+5 a b^2 B-3 A b^3\right ) \int \frac {\cot ^2(c+d x)+1}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 \int \frac {b \left (-B a^2+2 A b a+b^2 B\right )+b \left (A a^2+2 b B a-A b^2\right ) \tan \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2+b^2}+\frac {a \left (a^3 B+a^2 A b+5 a b^2 B-3 A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {\frac {4 \int -\frac {b \left (-B a^2+2 A b a+b^2 B-\left (A a^2+2 b B a-A b^2\right ) \cot (c+d x)\right )}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right )}+\frac {a \left (a^3 B+a^2 A b+5 a b^2 B-3 A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {a \left (a^3 B+a^2 A b+5 a b^2 B-3 A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 \int \frac {b \left (-B a^2+2 A b a+b^2 B-\left (A a^2+2 b B a-A b^2\right ) \cot (c+d x)\right )}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {a \left (a^3 B+a^2 A b+5 a b^2 B-3 A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 b \int \frac {-B a^2+2 A b a+b^2 B-\left (A a^2+2 b B a-A b^2\right ) \cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {\frac {a \left (a^3 B+a^2 A b+5 a b^2 B-3 A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 b \left (\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \int \frac {\cot (c+d x)+1}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}\right )}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {\frac {a \left (a^3 B+a^2 A b+5 a b^2 B-3 A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 b \left (\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \left (\frac {1}{2} \int \frac {1}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} \int \frac {1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )\right )}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {a \left (a^3 B+a^2 A b+5 a b^2 B-3 A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 b \left (\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \left (\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {a \left (a^3 B+a^2 A b+5 a b^2 B-3 A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 b \left (\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {\frac {a \left (a^3 B+a^2 A b+5 a b^2 B-3 A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 b \left (\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {a \left (a^3 B+a^2 A b+5 a b^2 B-3 A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 b \left (\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {a \left (a^3 B+a^2 A b+5 a b^2 B-3 A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 b \left (\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\cot (c+d x)}+1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )+\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\frac {a \left (a^3 B+a^2 A b+5 a b^2 B-3 A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 b \left (\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 4117

\(\displaystyle \frac {\frac {a \left (a^3 B+a^2 A b+5 a b^2 B-3 A b^3\right ) \int \frac {1}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))}d(-\cot (c+d x))}{d \left (a^2+b^2\right )}-\frac {4 b \left (\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {-\frac {2 a \left (a^3 B+a^2 A b+5 a b^2 B-3 A b^3\right ) \int \frac {1}{a \cot ^2(c+d x)+b}d\sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right )}-\frac {4 b \left (\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {a (A b-a B) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}+\frac {\frac {2 \sqrt {a} \left (a^3 B+a^2 A b+5 a b^2 B-3 A b^3\right ) \arctan \left (\frac {\sqrt {a} \cot (c+d x)}{\sqrt {b}}\right )}{\sqrt {b} d \left (a^2+b^2\right )}-\frac {4 b \left (\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}\)

input
Int[(A + B*Tan[c + d*x])/(Cot[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^2),x]
 
output
(a*(A*b - a*B)*Sqrt[Cot[c + d*x]])/(b*(a^2 + b^2)*d*(b + a*Cot[c + d*x])) 
+ ((2*Sqrt[a]*(a^2*A*b - 3*A*b^3 + a^3*B + 5*a*b^2*B)*ArcTan[(Sqrt[a]*Cot[ 
c + d*x])/Sqrt[b]])/(Sqrt[b]*(a^2 + b^2)*d) - (4*b*(((2*a*b*(A - B) - a^2* 
(A + B) + b^2*(A + B))*(-(ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]]/Sqrt[2]) 
+ ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]]/Sqrt[2]))/2 + ((a^2*(A - B) - b^2 
*(A - B) + 2*a*b*(A + B))*(-1/2*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c 
 + d*x]]/Sqrt[2] + Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]/(2*S 
qrt[2])))/2))/((a^2 + b^2)*d))/(2*b*(a^2 + b^2))
 

3.6.98.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4064
Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*( 
x_)])^(m_.)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp 
[g^(m + n)   Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d + c 
*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !Integer 
Q[p] && IntegerQ[m] && IntegerQ[n]
 

rule 4092
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[b*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1) 
/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^ 
2 + b^2))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b* 
B*(b*c*(m + 1) + a*d*(n + 1)) + A*(a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2 
)) - (A*b - a*B)*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n 
+ 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && 
 NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] 
&& (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] 
 || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 

rule 4136
Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) 
+ (f_.)*(x_)]), x_Symbol] :> Simp[1/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^ 
n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Simp[ 
(A*b^2 - a*b*B + a^2*C)/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^n*((1 + Tan[ 
e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, 
 C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] & 
&  !GtQ[n, 0] &&  !LeQ[n, -1]
 
3.6.98.4 Maple [A] (verified)

Time = 0.44 (sec) , antiderivative size = 336, normalized size of antiderivative = 0.86

method result size
derivativedivides \(\frac {-\frac {2 \left (\frac {\left (2 a b A -B \,a^{2}+B \,b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{8}+\frac {\left (-A \,a^{2}+A \,b^{2}-2 B a b \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{8}\right )}{\left (a^{2}+b^{2}\right )^{2}}-\frac {2 a \left (-\frac {\left (A \,a^{2} b +A \,b^{3}-B \,a^{3}-B a \,b^{2}\right ) \sqrt {\cot \left (d x +c \right )}}{2 b \left (b +a \cot \left (d x +c \right )\right )}+\frac {\left (A \,a^{2} b -3 A \,b^{3}+B \,a^{3}+5 B a \,b^{2}\right ) \arctan \left (\frac {a \sqrt {\cot \left (d x +c \right )}}{\sqrt {a b}}\right )}{2 b \sqrt {a b}}\right )}{\left (a^{2}+b^{2}\right )^{2}}}{d}\) \(336\)
default \(\frac {-\frac {2 \left (\frac {\left (2 a b A -B \,a^{2}+B \,b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{8}+\frac {\left (-A \,a^{2}+A \,b^{2}-2 B a b \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{8}\right )}{\left (a^{2}+b^{2}\right )^{2}}-\frac {2 a \left (-\frac {\left (A \,a^{2} b +A \,b^{3}-B \,a^{3}-B a \,b^{2}\right ) \sqrt {\cot \left (d x +c \right )}}{2 b \left (b +a \cot \left (d x +c \right )\right )}+\frac {\left (A \,a^{2} b -3 A \,b^{3}+B \,a^{3}+5 B a \,b^{2}\right ) \arctan \left (\frac {a \sqrt {\cot \left (d x +c \right )}}{\sqrt {a b}}\right )}{2 b \sqrt {a b}}\right )}{\left (a^{2}+b^{2}\right )^{2}}}{d}\) \(336\)

input
int((A+B*tan(d*x+c))/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^2,x,method=_RETURNV 
ERBOSE)
 
output
1/d*(-2/(a^2+b^2)^2*(1/8*(2*A*a*b-B*a^2+B*b^2)*2^(1/2)*(ln((1+cot(d*x+c)+2 
^(1/2)*cot(d*x+c)^(1/2))/(1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2)))+2*arctan 
(1+2^(1/2)*cot(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2)))+1/8*(- 
A*a^2+A*b^2-2*B*a*b)*2^(1/2)*(ln((1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2))/( 
1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2)))+2*arctan(1+2^(1/2)*cot(d*x+c)^(1/2 
))+2*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2))))-2*a/(a^2+b^2)^2*(-1/2*(A*a^2*b+ 
A*b^3-B*a^3-B*a*b^2)/b*cot(d*x+c)^(1/2)/(b+a*cot(d*x+c))+1/2*(A*a^2*b-3*A* 
b^3+B*a^3+5*B*a*b^2)/b/(a*b)^(1/2)*arctan(a*cot(d*x+c)^(1/2)/(a*b)^(1/2))) 
)
 
3.6.98.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 5899 vs. \(2 (353) = 706\).

Time = 19.64 (sec) , antiderivative size = 11824, normalized size of antiderivative = 30.16 \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx=\text {Too large to display} \]

input
integrate((A+B*tan(d*x+c))/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^2,x, algorith 
m="fricas")
 
output
Too large to include
 
3.6.98.6 Sympy [F]

\[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx=\int \frac {A + B \tan {\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{2} \cot ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate((A+B*tan(d*x+c))/cot(d*x+c)**(3/2)/(a+b*tan(d*x+c))**2,x)
 
output
Integral((A + B*tan(c + d*x))/((a + b*tan(c + d*x))**2*cot(c + d*x)**(3/2) 
), x)
 
3.6.98.7 Maxima [A] (verification not implemented)

Time = 0.73 (sec) , antiderivative size = 360, normalized size of antiderivative = 0.92 \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx=-\frac {\frac {4 \, {\left (B a^{4} + A a^{3} b + 5 \, B a^{2} b^{2} - 3 \, A a b^{3}\right )} \arctan \left (\frac {a}{\sqrt {a b} \sqrt {\tan \left (d x + c\right )}}\right )}{{\left (a^{4} b + 2 \, a^{2} b^{3} + b^{5}\right )} \sqrt {a b}} - \frac {2 \, \sqrt {2} {\left ({\left (A + B\right )} a^{2} - 2 \, {\left (A - B\right )} a b - {\left (A + B\right )} b^{2}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left ({\left (A + B\right )} a^{2} - 2 \, {\left (A - B\right )} a b - {\left (A + B\right )} b^{2}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) - \sqrt {2} {\left ({\left (A - B\right )} a^{2} + 2 \, {\left (A + B\right )} a b - {\left (A - B\right )} b^{2}\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) + \sqrt {2} {\left ({\left (A - B\right )} a^{2} + 2 \, {\left (A + B\right )} a b - {\left (A - B\right )} b^{2}\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )}{a^{4} + 2 \, a^{2} b^{2} + b^{4}} + \frac {4 \, {\left (B a^{2} - A a b\right )}}{{\left (a^{2} b^{2} + b^{4} + \frac {a^{3} b + a b^{3}}{\tan \left (d x + c\right )}\right )} \sqrt {\tan \left (d x + c\right )}}}{4 \, d} \]

input
integrate((A+B*tan(d*x+c))/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^2,x, algorith 
m="maxima")
 
output
-1/4*(4*(B*a^4 + A*a^3*b + 5*B*a^2*b^2 - 3*A*a*b^3)*arctan(a/(sqrt(a*b)*sq 
rt(tan(d*x + c))))/((a^4*b + 2*a^2*b^3 + b^5)*sqrt(a*b)) - (2*sqrt(2)*((A 
+ B)*a^2 - 2*(A - B)*a*b - (A + B)*b^2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sq 
rt(tan(d*x + c)))) + 2*sqrt(2)*((A + B)*a^2 - 2*(A - B)*a*b - (A + B)*b^2) 
*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) - sqrt(2)*((A - B)* 
a^2 + 2*(A + B)*a*b - (A - B)*b^2)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan( 
d*x + c) + 1) + sqrt(2)*((A - B)*a^2 + 2*(A + B)*a*b - (A - B)*b^2)*log(-s 
qrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1))/(a^4 + 2*a^2*b^2 + b^4) + 
 4*(B*a^2 - A*a*b)/((a^2*b^2 + b^4 + (a^3*b + a*b^3)/tan(d*x + c))*sqrt(ta 
n(d*x + c))))/d
 
3.6.98.8 Giac [F]

\[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx=\int { \frac {B \tan \left (d x + c\right ) + A}{{\left (b \tan \left (d x + c\right ) + a\right )}^{2} \cot \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((A+B*tan(d*x+c))/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^2,x, algorith 
m="giac")
 
output
integrate((B*tan(d*x + c) + A)/((b*tan(d*x + c) + a)^2*cot(d*x + c)^(3/2)) 
, x)
 
3.6.98.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx=\int \frac {A+B\,\mathrm {tan}\left (c+d\,x\right )}{{\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^2} \,d x \]

input
int((A + B*tan(c + d*x))/(cot(c + d*x)^(3/2)*(a + b*tan(c + d*x))^2),x)
 
output
int((A + B*tan(c + d*x))/(cot(c + d*x)^(3/2)*(a + b*tan(c + d*x))^2), x)